An EasyPeasy Publication [Version ©.0.0.1]
(c) 1999 EasyPeasy Corporation. All rights reserved.

C:\A Beginner’s Guide to\Coding

C:\Learn How To\read code like a pro
C:\Learn How To\write code like a pro

C:\Learn How To\rub your temples and say €‘this code
doesn’t make any sense’ like a pro




C:\ArraylList

An ArraylList is an adaptable array. It is a series of memory locations -
or ‘boxes’ - each of which holds a single item of data, but with each box
sharing the same name.

The easiest way to think of an ArraylList is to think of it as a table.
For example, here we have set up a new ArraylList of Strings (text values)
and called the ArraylList capitalCities. We have put three values into the
array using the ArraylList.add() method (explained on the next page).
ArraylList<String> capitalCities = new ArraylList<String>()

capitalCities.add("London") capitalCities.add("Tokyo")
capitalCities.add("Ulaanbaatar™)

So if we visualise this ArraylList as a table it looks like this:

capitalCities

ArraylList Position © ArraylList Position 1 ArraylList Position 2

London Tokyo Ulaanbaatar

It is important to note that an ArraylList starts with an item in
Position © and works up from there.




C:\ArraylList\add

We mentioned the ArraylList.add() method on the previous page.

ArraylLists are adaptable - you can add or remove elements from anywhere
in the list at any time.

Here is a simple example of this using the established Arraylist
capitalCities from the previous page:

capitalCities.add("Berlin")

capitalCities

ArraylList Position © ArraylList Position 1 | ArraylList Position 2 ArraylList Position 3

London Tokyo Ulaanbaatar Berlin

If there are currently no entries into the ArraylList when you call the
.add() method then it will add the first at position © and work up from
there (as mentioned on the previous page).




C:\initialising variables

At the top of any program, the initial variables are defined.
A number is often defined as an int (integer):

E.g.

int number = 5
int secondNumber = 3

This sets up two variables, one called number which is equal to 5 and one

called secondNumber which is equal to 3. Variable names can be anything
you like.

These variables can be updated later on in the program.

E.g.

int number = 5

number minus 1 <-- once established you don’t need to say int again

Now the integer number is equal to 4.




C:\while loops

A ‘while loop’ is a piece of code that continues to run while a certain
argument remains valid.

While the statement in the brackets continues to be correct, then the
code inside the { } continues to loop back on itself and runs again and
again until the statement is no longer correct.

E.g.
int number = 5

while (number isSmallerThan 7)
{
number plus 1
System.out.print(“x”)

}

In this example, the integer number has been established as the number 5.
When the code gets to the while loop it checks if the number is smaller
than 7 and if it is then it runs the code in the {}.

Once the code in the brackets has run, it goes back to the top and checks
again if number is smaller than 7. If it is, it runs again.




C:\while loops\continued

This is how the code on the previous page will run:

First time - number is 5, therefore smaller than 7, therefore the while
loop runs, number 1is increased by 1 - from 5 to 6 and an “x” is printed
out.

Second time - number is 6, therefore smaller than 7, therefore
the while loop runs, number is increased by 1 - from 6 to 7 and a second

€€,

x” is printed out.

Third time - number is 7, which is no longer smaller than 7, therefore
the while loop doesn’t run and the program moves on to whatever code
is underneath the { } of the while loop.

Sometimes while loops can have two arguments -

E.g.

while (number isSmallerThanOrEqualTo 6 & number isBiggerThan 1)

- while both these statements are correct, the code in the { } runs.




C:\1f statements

An ‘if statement’ is exactly what it sounds 1like.

If the statement in the () brackets after the word if is correct,
then the code inside the { } runs.

If the statement is not correct then the code inside the { } doesn’t
run and the program moves on.

E.g.
int number = 4

if (number isEqualTo “4”) <-- number DOES equal 4, so the code runs

{

System.out.print(“This code ran”) <-- the code prints out “This code ran”

}

In this example, the integer number has been established as the number 4,
so the code inside the { } runs and prints out “This code ran”.




C:\printing out

Occasionally the program you are running will need to print out text to
the console.

This can be done by writing System.out.print(variable)
E.g.
System.out.print(“This code ran”)

The text “This code ran” will be printed out in the console.




C:\ArraylList\get

Here we look at the ArraylList.get() method.

This method will give you the ArraylList entry at whatever position you
specify between the brackets, as a result.

Here is an example using the ArraylList capitalCities from the previous
page:

int arrayPosition = 2
capitalCities.get(arrayPosition)

This would return the value “Ulaanbaatar” as ‘“Ulaanbaatar?” is in
Position 2 in the Arraylist.

capitalCities

ArraylList Position © ArraylList Position 1 | ArraylList Position 2 ArraylList Position 3

London Tokyo Ulaanbaatar Berlin

N.B. the get() method returns the value, it does not overwrite the
arrayPosition value




An EasyPeasy Publication [Version ©.0.0.1]
(c) 1999 EasyPeasy Corporation. All rights reserved.




	Coding Manual Front Page
	Coding Manual ArrayLists
	Coding Manual ArrayLists Add
	Coding Manual Variables
	Coding Manual While Loops 1
	Coding Manual While Loops 2
	Coding Manual If Statements
	Coding Manual Printing Out
	Coding Manual ArrayLists Get
	Coding Manual Back Page

